Binary and Hexadecimal numbers

Computer and binary numbers

- Inside the computer, the binary string (bit string) is used for information processing
 - Based on the use of high and low voltages to process information, using the binary numbers is easier than using the decimal numbers to make a calculation
 - To calculate decimal numbers, first, they are converted to binary numbers. The binary numbers are then calculated. Finally, the resulting binary numbers are reconverted to decimal numbers for displaying.

Binary number

Using 0 and 1

Decimal number	0	1	2	3	4	5	6	7
Binary number	0	1	10	11	100	101	110	111

Radix (or Base)

- Radix of Decimal number is 10
 - $-207_{(10)} = 2 \times 10^2 + 0 \times 10^1 + 7 \times 10^0$
 - The first digit is $10^0 (=1)$
 - The second digit is 10¹
 - The third digit is 10^2
- Radix of binary number is 2
 - $-101_{(2)} = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$
 - The first digit is $2^0 (=1)$
 - The second digit is 2¹

Using binary number to represent the weather

One card has front as 0 and back as 1 value.

 To represent 4 types of weather, 2-digit binary number is needed.

sunny	00
rainy	01
snowy	10
cloudy	11

The relation between the binary number and the amount of information

- One-digit binary number
 - distinguishes 2 kinds of information
- Two-digit binary number
 - distinguishes 4 kinds of information
- Three-digit binary number
 - distinguishes 8 kinds of information

We will study about the amount of information in the 7th lecture

Conversion from binary to decimal number

 Calculate the sum of the corresponding power two of weight value for all digits 1 in binary number. (the weight of the left-most digit is 0, the next one is 1...)

Conversion from decimal to binary (Integers)

Arrange in reverse order of modulo 2

```
Modulo 2
2)207
                     207_{(10)} = 11001111_{(2)}
                Arrange in
               reverse order
```

Conversion from decimal to binary (Fraction)

arrange

$$0.625_{(10)} = 0.101_{(2)}$$

Hexadecimal number

- It's hard to read the binary number once its number of digits increases.
- One digit of hexadecimal number is combined by 4 digits of binary number.

Decimal number	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadecimal number	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ш	F

Used for character coding (lecture 5), displaying colors in web page (lecture 9), programming, etc.

Conversion from binary to hexadecimal number

- From the left-most digit, divide to groups that contains each four digits.
- Convert each 4-digit binary number group to decimal number, and then convert it to hexadecimal.

100	1110	0110	
4	14	6	10011100110 ₍₂₎ =4E6 ₍₁₆₎
4	E	6	

Conversion from hexadecimal to decimal number

- Calculate the sum of (weight of each digit * digit value)
- The left-most digit is 16⁰, the next one is 16¹...

