Character representation

Using binary numbers to represent characters

- Computer can handle character data
 - For example, mapping each binary number to each character and then handling the binary numbers instead of characters.

Character	А	В	С	D
Binary number	00	01	10	11

※ These mapping rules are not the real ones in computer.

- The process of converting characters to binary strings (bit sequences) which computer can handle is called encoding.
- The table that consists characters and binary strings is called character code table.

Character Encoding ASCII code

- ASCII code
 - Characters are encoded in 7-digit binary numbers.
 - The 4 left-most bits represent hexadecimal numbers from 0~F, the 3 right-most bits represent hexadecimal numbers from 0~7. (E.g.: A=41(16)=1000001(2))
 - Specially defined control characters such as CR, DEL, etc. do specific functions.
 - BS(Back Space): turn back by one character
 - CR(Carriage Return): start new line of text
 - Japanese uses many characters so that 7 bits can not represent sufficiently.

ASCII code table

/	0	1	2	3	4	5	6	7
0	Null	DLE	Space	0	@	Ρ	`	р
1	SOH	DC1	!	1	Α	Q	а	q
2	STX	DC2	"	2	В	R	b	r
3	ETX	DC3	#	3	С	S	с	S
4	EOT	DC4	\$	4	D	Т	d	t
5	ENQ	NAK	%	5	Е	U	е	u
6	ACK	SYN	&	6	F	V	f	v
7	BEI	ETB	Ţ	7	G	W	g	w
8	BS	CAN	(8	н	Х	h	х
9	HT	EM)	9	I	Y	i	у
Α	LF	SUB	*	:	J	Ζ	j	Z
В	VT	ESC	+	,	К	[k	{
С	FF	FS	,	<	L	١	I	1
D	CR	GS	-	=	М]	m	}
Е	SO	RS	•	>	N	^	n	~
F	SI	US	/	?	0	_	0	DEL

Japanese Encoding Multibyte Encoding (variable-width encoding)

- Japanese including Kanji with 65536 characters can be represented by 16-bit (2 bytes) binary numbers.
 - JIS X 0208 standard prescribes 6879 characters of Hiragana, Katakana, Kanji, ...
- There are three types of encoding based on JIS X 0208
 - ISO-2022-JP(JIS) · · · Mainly used in email
 - Shift_JIS · · · First used in Windows and widely used in personal computer.
 - EUC-JP · · · Mainly used in Unix

5

Unicode

- Representation and handling of text expressed in most of the world's writing system.
 - Shift-JIS or EUC-JP that is based on JIS X 0208 is only used in Japan
 - Started to express the characters in the whole world by 16-bit binary number.
- Two encoding types
 - UCS-2, UCS-4
 - UTF-7, UTF-8, UTF-16, UTF-32
- Official website: <u>http://unicode.org</u>

There's also a problem of integrated working (be assumed as the same) in such languages using similar Kanji as Japanese, Chinese or Korean